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J. Phys.: Condens. Matter l(1989) 6709-6715. Printed in the UK 

The S = 1 quantum spin chain with equal Heisenberg 
and biquadratic exchange in a magnetic field 

J B Parkinson 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, UK 

Received 18 May 1989 

Abstract. The S = 1 quantum spin chain with equal Heisenberg and biquadratic exchange 
was shown by Sutherland to beintegrable. In this paper the equationsobtained by Sutherland 
are solved numerically to obtain the behaviour at zero temperature in a magnetic field. It is 
found that there is an additional phase change at a lower field than the spin flop field. This 
new phase change marks the boundary between a regime in which the ground state contains 
only atoms with S' = 1,O and one in which 1,O and - 1 are present. 

The form of the elementary excitations in the two regimes is discussed and the possibility 
of a similar phase change in the pure Heisenberg model is considered. 

1. Introduction 

In this paper results are presented for a quantum spin chain of N atoms each with spin 1 
described by the Hamiltonian 

for the particular caseJ, = J 2  = 1. The quantity His proportional to the appliedmagnetic 
field. This model is sometimes called the Schrodinger or permutation model 
(Schrodinger and Hamilton 1941), but for the linear chain is usually known as the Lai- 
Sutherland model (Lai 1974, Sutherland 1975). This system is antiferromagnetic for H = 
0. (The choice J 1  = J 2  = - 1 has the same eigenstates but is ferromagnetic for H = 0 
and will not be considered explicitly.) Periodic boundary conditions are used so that 
S i + N  Si, and N is taken as even. The square of the total spin (with quantum number 
S,) and the total z-component, S+ = Xisf, both commute with X ,  Translational sym- 
metry is incorporated by means of the wavevector k .  
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The Hamiltonian (1.1) with J 1  = J 2  = 1 can be rewritten as 

X = N + + h i - H + S f  (1.2) 
I i 

where hi = (Si Si+,) + (Si - 
single interacting pair as 

- 1 which can be written in terms of the basis of a 
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showing clearly the ‘permutation’ nature of this Hamiltonian. 
The fully aligned state will be denoted by IO), and has S$ = Nand energy 2N when 

H = 0. All other energies will be measured relative to this state. For the remainder of 
this section H will be taken as 0. 

Because of the form of hi, the numbers of atoms of each of the three possible types 
+l, 0, -1 are conserved. Denoting these numbers by N1, No,  and N-l respectively and 
defining M o  = No + = N ,  and S $  = N1 - N - l .  The 
fractions Ni/N and Mo/N will be denoted ni and mo respectively. The set of states with 
given S $  can be further block diagonalised into states with given [N, ,  No,  N-,].  One 
feature to note is that the eigenvalues for a given set [N1, No,  N-,] are identical to those 
for the set [No,  N1, N - J ,  and for any other arrangement of the N, ,  although clearly these 
will have different S$ in general. 

The additional block diagonalisation can be exploited in numerical calculations of 
short chains. It enables chains with N S 15 to be diagonalised using a Lanczos technique. 
The results for N = 15 are included in the figures. 

Using the Bethe ansatz in the limit N+ x, Sutherland obtained the following integral 
equations for the lowest state with a given set [Nl, No, N - J .  

then clearly N I  + N o  + 

where 

(1.4a) 

(1.4b) 

g( a) = 4/( 1 + 4a2)  

K , ( x )  = -l/n(l + 2) 
K 2 ( x )  = S/n(l + 4x2) = ( 2 / n ) g ( x )  
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which can be solved self-consistently for R1 and Rz for given values of B ,  and B2. The 
parameters B1 and B2 are related to the Ni by 

1 B 2  
n-l = -1 R2(a)  d a .  

27c - B 2  

(1.5b) 

The energy per atom '& and magnetisation a = S",N are given by 

B1 B2 
a = 1 - 'J R l ( a )  d a  - R2(a)  d a .  

2JG -B1 2n -B2 

The absolute ground state of the system in zero field is the state in which n1 = no = 
n-l = 4, B1 = B2 = m, and energy % = 1 - n/(3d3) - In 3 = -0.70321. 

2. Effect of the magnetic field 

Since S$ is a constant of the motion the eigenstates are unchanged by the presence of 
the field although clearly the eigenvalues are shifted by an amount -HS$. For H 3 H,,, 
where H,, = 4 is the spin-flop field, the aligned state 10) is the lowest state and the 
magnetisation a = 1. However, for fields in the range 0 < H < Hsf, the so-called spin- 
flop regime, the lowest state will be one with intermediate magnetisation 0 < a < 1. 

To determine how a varies with field it is necessary to solve equations (1.4a, b)  
numerically. This is done by dividing the range of integration into a large number 
(typically 50) of intervals thus converting the integral equations into difference equations 
which can then be solved by matrix inversion. First a value of a is selected. B,  is chosen 
arbitrarily, B ,  adjusted to give the selected a and the energy calculated. The process is 
repeated for various values of B2 until the state of lowest energy for the given a is 
obtained. A curve can then be constructed of energy versus a for H = 0 the gradient of 
which gives the corresponding value of H for this value of 0 in the spin-flop regime. 

The results are shown in figures 1-3. The most notable feature is the phase change 
at a, which is numerically equal to 0.5562. For values of a > a,, the lowest state is one 
in which B2 is zero. This is a state in which only atoms with zero or one deviation are 
present, i.e. N-l = 0. The value of the field H, at which the phase change occurs is found 
numerically to be 0.9414. As a decreases from a, the fraction ~ t - ~  increases smoothly 
from 0 to 5 at a = 0. 

If one considers states of the type found for a > a,, in which N - l  = 0, then it is easy 
to show that these states have a 1 - 1, onto mapping to states of an isotropic S = 4 
Heisenberg chain (Bader and Schilling 1984). Consequently the magnetisation curve for 
this region is identical to that of the spin-: system obtained by Griffiths (1964), except 
that it is shifted by an constant equal to B. 
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Figure 1. Curve A shows the minimum energy as a function of U of states with N-, = 0. The 
ground state is of this form for a 2 uc. Curve B shows the minimum energy of states with 
N-, # 0, giving the ground state for U < uc. The two curves intersect tangentially at uc as 
shown in the inset. The gradient of the curves is proportional to the magnetic field for a given 
n as shown in figure 2. 

0 

H 

Figure 2. Magentisation curve; U versus H.  The stepped curve is the result for a chain with 
N = 15. The broken curve is the analytic continuation of the curve for U 2 a, to the region 
U < a,. This curve is identical to that of the S = 4 Heisenberg model but with a vertical shift 
of 0.5. 
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Figure 3. Variation of n-,, no, n ,  with U.  The crosses are the values for the N = 15 chain 

3. Elementary excitations 

The form of the elementary excitations in the spin-flop phase of an antiferromagnetic 
quantum spin chain is known to consist of tracking soft modes. These have a periodicity 
in k-space which reflects that in real space. For a spin4 isotropic Heisenberg chain the 
modes were studied by Ishimura and Shiba (1977), who found a single soft mode. 
The results were later extended (Aghahosseini and Parkinson 1980) to show the full 
periodicity. The periodicity in real space can be visualised as consisting of atoms with a 
single deviation equally spaced in a background of atoms with no deviations. As the 
magnetic field increases towards H,, the number of deviations decreases, the spacing of 
them in real space increases, and the periodicity in k-space decreases. 

The details of these calculations are rather complicated and so they have not been 
carried out for the present system. Nevertheless, it is possible to predict the main features 
for the two distinct regimes as follows. 

If U > U, then the behaviour will be identical to the spin-l behaviour. The periodicity 
in k-space does not go to n as U+ a, since ac is greater than A. 

If a < U, then atoms of all three types are present and the periodicity in real space is 
more complicated. There will be more atoms with Sf = 1 than any other type, and these 
can be regarded a forming the background. The standard method of obtaining the 
energies of the elementary excitations from the Bethe ansatz equations is to alter one of 
the quantum numbers, in the manner first described by des Cloiseaux and Pearson 
(1962). In the present case there are two possible ways of doing this, corresponding to 
introducing a discontinuity into either of the two integrals in each of equations (1.4a, b) .  
The first integral is associated with the set of all atoms with S: = 0, - 1. There are MO = 
No + N - ,  of these so if they were equally spaced the spacing would be l /mo. The 
corresponding periodicity in k-space would be 27".  The second integral is associated 
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Figure 4. Spectra of elementary excitation (schematic) for various values of U. There are two 
branches for U < U,. Only the first period of each branch is shown. 

only with theN-, atoms with St = -1, so the spacing would be l /n-l ,  and corresponding 
periodicity 2 ~ n - ~ .  

It is convenient to measure the energies of the excitation spectra relative to the lowest 
state with the same S+. This ensures that the minima of the spectra are at zero energy. 
If the energies were measured relative to the lowest state with a value of S+ one less then 
there would be a gap in spectra with magnitude proportional to the magnetic field H .  
The amplitude of the spectra increases with the periodicity in k-space. 

For H = 0 the two branches of the spectra are given by Sutherland as 

%,(k) = 2n[cos(pn/3 - k )  - cos(pn/3)]/3 sin(pn/3 - k )  

wherep = 1,2 .  These have amplitudes 2n/(3d3),  2 n / d 3  and periodicities 2n/3,4n/3 
respectively. 

Figure 4 shows a schematic picture of the excitations for various values of 0. 

4. Relation to the pure Heisenberg spin-1 model 

An important reason for studying Hamiltonians of the form (1.1) for various values of 
J 1  and J 2  is that they help to shed light on the behaviour of the pure Heisenberg S = 1 
chain (i.e. with J 2  = 0). In particular the question of the nature of the ground state of 
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the pure Heisenberg model has been of great interest following the initial work of 
Haldane (1983a, b). An example of how study of a related model gives useful information 
is the work of Affleck et al (1987) on the valence bond model, corresponding to the 
choice.T2 = J1/3. (See also Arovas et a1 1988.) 

The results presented in this paper are not directly related to the question of the 
ground state of the pure Heisenberg model. They may, however, shed some light on the 
behaviour of the elementary excitations in the spin-flop phase. For the pure Heisenberg 
model, which is not Bethe ansatz integrable, these excitations have been studied numeri- 
cally (Parkinson and Bonner 1985). The results are similar to the Lai-Sutherland model 
in that there is evidence for two phases, with a division at a, = 4. There is, however, one 
important difference. 

In both the pure Heisenberg and Lai-Sutherland cases, the phase a, 6 a < 1 shows 
quantum behaviour, characterised by a tracking soft mode. In the Lai-Sutherland 
model the phase 0 < CJ s a, also shows quantum behaviour, albeit of a slightly more 
complicated form. For the pure Heisenberg model the numerical results for the the 
low-a phase indicate a classical behaviour. Nevertheless, the existence of two distinct 
phases, separated by a critical field, in the Lai-Sutherland model does give support to 
the existence of two phases in the pure Heisenberg model. Whether the two phases are 
separated by a definite critical field in the pure Heisenberg model is still not clear, of 
course. 
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